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The stochastic coherent adaptive large eddy simulation (SCALES) methodology
is a novel approach to the numerical simulation of turbulence, where a dynamic
grid adaptation strategy based on wavelet threshold filtering is utilized to solve
for the most ‘energetic’ eddies. The effect of the less energetic unresolved motions
is simulated by a model. Previous studies have demonstrated excellent predictive
properties of the SCALES approach for decaying homogeneous turbulence. In this
paper the applicability of the method is further explored for statistically steady
turbulent flows by considering linearly forced homogeneous turbulence at moderate
Reynolds number. A local dynamic subgrid-scale eddy viscosity model based on
the definition of the kinetic energy associated with the unresolved motions is used
as closure model. The governing equations for the wavelet filtered velocity field,
along with the additional evolution equation for the subgrid-scale kinetic energy, are
numerically solved by means of a dynamically adaptive wavelet collocation method.
It is demonstrated that adaptive simulations closely match results from a reference
pseudo-spectral fully de-aliased direct numerical simulation, by using only about 1 %
of the corresponding computational nodes. In contrast to classical non-adaptive large
eddy simulation, the agreement with direct solution holds for the mean flow statistics
as well as in terms of energy and enstrophy spectra up to the dissipative wavenumbers
range.

1. Introduction
Over the last two decades, starting from the pioneering work by Farge & Rabreau

(1988), wavelet decomposition techniques have been successfully applied to study
turbulent flows in terms of both a posteriori analysis (e.g. Farge, Pellegrino & Schneider
2001; Farge et al. 2003; De Stefano, Goldstein & Vasilyev 2005; Okamoto et al.
2007) and numerical simulation (Goldstein, Vasilyev & Kevlahan 2005; De Stefano,
Vasilyev & Goldstein 2008; Vasilyev et al. 2008). Wavelet decomposition has been
shown to be an effective tool to decompose fluid motion into an organized coherent
part, consisting of a small fraction of the modes that contain the majority of energy
and enstrophy of the flow, and an incoherent residual field (e.g. Farge et al. 2003;
Okamoto et al. 2007). As a result, the coherent modes are mostly responsible for
the evolution of the turbulence and the wavelet decomposition, thus, provides an
efficient physically based method for solving/modelling turbulent flows. This property
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of wavelet-based coherent/incoherent velocity field decomposition was utilized by
Farge, Schneider & Kevlahan (1999) to introduce the coherent vortex simulation
(CVS) method. The evolution of the coherent eddies was proposed to be explicitly
simulated by completely discarding the effect of the incoherent part, which was shown
to consist of a Gaussian white noise that provides no turbulent dissipation (Farge
et al. 2001). This way, the number of degrees-of-freedom of the numerical solution was
substantially reduced with respect to direct numerical simulation (DNS). However,
the computational cost of CVS was closer to DNS than large eddy simulation (LES),
mainly because the method relied on physical dissipation and coherent modes were
resolved all the way down to the Kolmogorov scale.

In order to overcome the computational constrains of CVS and make the wavelet-
based method more feasible, a more comprehensive approach referred to as stochastic
coherent adaptive large eddy simulation (SCALES) has been recently proposed
by Goldstein & Vasilyev (2004). In the SCALES approach, the formal separation
between resolved coherent structures and unresolved eddies is ‘shifted’ towards the
range of more energetic eddies so that the effect of the unresolved motions can no
longer be neglected and must be modelled. The introduction of a subgrid-scale (SGS)
model makes it possible to further reduce the degrees-of-freedom of the numerical
solution and a higher grid compression with respect to CVS is achieved. In fact, the
use of a closure model makes the SCALES methodology similar to LES. However,
in contrast to standard LES, which is based on linear low-pass filters, SCALES
exploits a wavelet-based nonlinear multiscale thresholding filter, which depends on the
instantaneous flow realization. Furthermore, the distinctive difference is in the direct
coupling of computational grid and SGS model. The method has the ability either
to compensate for inadequate SGS dissipation provided by the model by increasing
the local resolution and, hence, the level of resolved viscous dissipation or to coarsen
the mesh in regions of high SGS dissipation. Both CVS and SCALES approaches
have been numerically implemented using the adaptive wavelet collocation method
(AWCM), developed by Vasilyev & Bowman (2000), Vasilyev (2003) and Vasilyev &
Kevlahan (2005), which allows high-resolution computations to be carried out only
in those regions where the turbulent field shows sharp transitions.

Different SGS models, originally developed in the context of LES, have been
successfully extended to the SCALES framework. For instance, the dynamic
Smagorinsky model, based on the extension of the classical Germano procedure
redefined in terms of wavelet thresholding filters, was considered by Goldstein et al.
(2005). In order to fully exploit the dynamic adaptivity of the method and not to rely
on the presence of homogeneous directions to stabilize the numerical calculations
(e.g. Lilly 1992), two classes of local dynamic SGS models for SCALES have been
proposed recently: a Lagrangian path-line/tube dynamic model (Vasilyev et al. 2008)
and local one-equation dynamic models based on the SGS turbulent kinetic energy
(De Stefano et al. 2008).

Until now, the SCALES approach has been almost exclusively tested for
incompressible decaying homogeneous turbulence. Due to the decaying nature of
the previously studied flows, it was not possible to fully evaluate the method. The
objective of this paper is to assess the stability and predictive properties of the
SCALES approach for statistically stationary turbulence by performing adaptive LES
of forced homogeneous turbulence. Due to the use of adaptive computational mesh
by the wavelet solver, it is preferable to introduce forcing directly in physical space.
For this reason, in contrast to the classical Fourier forcing that is applied in a narrow
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bandwidth of small wavenumbers, we adopt the forcing scheme recently proposed by
Lundgren (2003), and extensively studied by Rosales & Meneveau (2005), according
to which the force is a simple linear function of velocity.

Two different modelling procedures are tested, namely the global dynamic model
introduced in (Goldstein et al. 2005) and the localized dynamic kinetic-energy-based
model proposed by De Stefano et al. (2008). It should be noted that the ultimate
objective for the SCALES development is the simulation of turbulent flows of
engineering interest. However, this is a subject of future research and is not addressed
in this work.

The rest of the paper is organized as follows. The linear forcing assumption is briefly
reviewed in § 2. The general features of the SCALES approach to the simulation of
forced turbulence, along with the pertinent governing equations, are discussed in § 3.
The results of the numerical experiments carried out are presented in § 4 and, finally,
some conclusions are given in § 5.

2. Linearly forced isotropic turbulence
The continuity and Navier–Stokes equations for incompressible flow can be written

in the forced case as

∂ui

∂xi

= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ fi, (2.2)

where ρ and ν are the constant density and kinematic viscosity of the fluid, while fi

stands for the force per unit mass.
Following the idea of Lundgren (2003), we consider the forcing term proportional to

the velocity field, fi = Qui , where Q is a constant parameter. For historical fairness, it
should be noted that a similar forcing was originally studied in Machiels (1997), where
a linear force was applied in Fourier space for a given shell of small wavenumbers.
However, in this work, as well as in Lundgren (2003) and Rosales & Meneveau (2005),
the turbulence is forced uniformly in the entire wavenumbers domain.

The forcing coefficient Q can be expressed in terms of the turbulent flow
characteristics. As shown in Lundgren (2003), the balance equation for the kinetic
energy, k = ui ui/2, can be written as

∂k

∂t
+ uj

∂k

∂xj

= − 1

ρ

∂

∂xi

(p ui) + ν
∂2k

∂xj∂xj

− ε̃ + 2Qk, (2.3)

where ε̃ = ν(∂ui/∂xj )(∂ui/∂xj ) stands for the so-called pseudo-dissipation (Pope 2000).
By assuming statistically homogeneous turbulence and exploiting the continuity
constraint (2.1), the energy equation is rewritten in terms of volume-averaged variables
as

dK

dt
= −〈ε̃〉 + 2QK, (2.4)

where K = 〈k〉 stands for the mean kinetic energy and angular brackets denote
volume-averaging. It is worth noting that the turbulent dissipation is usually defined
as ε = 2νSijSij , where Sij = (∂ui/∂xj +∂uj/∂xi)/2 is the rate-of-strain tensor. However,
in the present homogeneous case, for the corresponding mean values it can be
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readily shown that 〈ε̃〉 = 〈ε〉 (Pope 2000). For this reason, in the following, the mean
dissipation can be used instead of the mean pseudo-dissipation.

For statistically steady flow, the energy production rate must equal the dissipation
by viscous effects so that, according to (2.4), for the constant forcing parameter it
simply holds

Q =
〈ε〉
2K

. (2.5)

This way, the turbulent field is continuously supplied with the amount of energy
necessary to keep the total kinetic energy statistically constant in time. Note that
fixing the parameter Q is equivalent to prescribing the turbulent time scale since the
forcing parameter implicitly sets the eddy turnover time of the turbulence:

τeddy =
u′2

〈ε〉 =
1

3Q
, (2.6)

where u′ = (2K/3)1/2 stands for the r.m.s. velocity. Furthermore, the energy spectrum
at statistical steady state is insensitive to the initial velocity conditions (e.g. Rosales &
Meneveau 2005).

3. Forced turbulence simulation
In this section, after recalling some important features of the wavelet-thresholding-

based method, the filtered governing equations are introduced along with the closure
models employed in the simulation.

3.1. Wavelet filtering and adaptive wavelet collocation method

Wavelet filtering is performed in the wavelet space through wavelet coefficient
thresholding. The wavelet filtered velocity is defined by representing the instantaneous
turbulent velocity field in terms of wavelet basis functions and retaining only wavelets
with significant energy:

u>ε
i (x) =

∑
l∈L0

c0
l φ

0
l (x) +

+∞∑
j=0

2n−1∑
μ=1

∑
k ∈ Kμ,j

|dμ,j

k | >ε‖ui‖WTF

d
μ,j

k ψ
μ,j

k (x). (3.1)

In the above decomposition, bold subscripts denote an index in n-dimensional space,
e.g. k = (k1, . . . , kn), while L0 and Kμ,j are n-dimensional index sets associated with
scaling functions at zero level of resolution (φ0

l ) and wavelets of family μ and level

j (ψμ,j

k ), respectively. Each level of resolution j consists of a family of wavelets

ψ
μ,j

k having the same scale but located at different positions. The details about the
type and shape of the wavelets employed in the SCALES approach can be found
in (Goldstein & Vasilyev 2004). When a numerical discretization of the physical
domain is introduced, an one-to-one correspondence between grid points and wavelet
coefficients is prescribed. Discarding a wavelet, ψμ,j

k (x), whose coefficient d
μ,j

k is below
a given threshold practically means that ui has no significant variation at the j th
level of resolution in the immediate vicinity of the wavelet’s spatial position. Note
that the wavelet-based filter is defined by the non-dimensional relative thresholding
level ε and the wavelet threshold filtering (WTF) norm, ‖ · ‖

WTF
, which determines the

absolute (dimensional) scale. This way, different dimensional quantities can be filtered
using the same filter defined for the velocity field by (3.1). In this work, the L2 norm
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is assumed as WTF norm and, for homogeneous turbulence, the same scaling is used
in all directions, i.e. ‖ui‖WTF

= 〈2kres〉1/2, where kres = u>ε
i u>ε

i /2 stands for the resolved
kinetic energy that is the energy associated to the wavelet filtered velocity.

Owing to the one-to-one correspondence between grid points and wavelet
coefficients, by applying the above wavelet threshold filtering procedure, only a
subset of the available computational nodes is effectively retained in the calculation
and the grid is automatically adapted to the flow evolution, being refined in regions of
strong variations. This constitutes the core of the adaptive wavelet collocation method
(AWCM) developed by Vasilyev (2003) and Kevlahan & Vasilyev (2005). Briefly, the
AWCM is an adaptive, variable-order numerical method for solving partial differential
equations with localized structures that change their location and scale. Since the
computational grid automatically adapts to the solution, both in position and scale,
the regions of dynamically important flow features do not need to be known a priori .
The method is based on second-generation wavelets (Sweldens 1998), which allow the
order of the wavelets (and hence of the numerical method) to be varied easily. The
derivatives on the adaptive grid are calculated using finite-difference approximations
on fixed stencils by exploiting a ghost point approach (Vasilyev & Bowman 2000;
Vasilyev 2003). The method has a computational complexity O(N), where N is the
number of wavelets (or, equivalently, grid points) retained in the calculation, i.e.
those wavelets with significant coefficients plus nearest neighbours, both in position
and scale. The time integration scheme is based on a split-step method, where a non-
solenoidal velocity field is calculated in the first step and is made divergence free using
a pressure projection in the second step. Since pressure and velocity are given at the
same grid points, the Laplace operator for the pressure correction step is constructed
as the inner product of a downwind gradient operator and an upwind divergence
operator, which automatically avoids the odd–even decoupling instability associated
with non-staggered grids (Kevlahan & Vasilyev 2005). The numerical results reported
in this paper are obtained with sixth-order second-generation wavelets and sixth order
finite-difference approximations on symmetric stencils.

The threshold ε in WTF definition (3.1) explicitly defines the energy level of the
eddies that are resolved and, consequently, controls the importance of the influence
of the residual field on the dynamics of the resolved motions. The choice of a
sufficiently low threshold eliminates the need to adopt any modelling procedure, since
the residual field is not dynamically significant in this case, and the resulting approach
can be referred to as wavelet-based DNS (WDNS). The CVS approach (Farge et al.
1999) is obtained by choosing the threshold corresponding to de-nosing criteria of
Donoho & Johnstone (1994). In this case, the filtered velocity field represents the
coherent turbulent flow structures, whose evolution is computed, while the influence
of the incoherent background flow is neglected due to its decorrelation with the
coherent flow. Finally, when ε is chosen to be sufficiently higher than the CVS
threshold, only the most energetic coherent structures are resolved, while the effect of
the residual flow is modelled. This regime is representative of the SCALES approach.
The aforementioned CVS threshold thus stands for the lower threshold limit for the
SCALES method. On the other side, the upper limit is dictated by the requirement
to resolve dynamically dominant flow structures, and can be empirically determined.
The choice of the actual value of ε directly controls the relative importance of SGS
modelling and computational cost in the SCALES approach. As illustrated in § 3.3,
the larger ε the higher is the contribution of the SGS dissipation. Also note that the
lower levels of SGS dissipation are associated with the increased grid resolution and
the larger per cent of the resolved viscous dissipation.
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Finally, it should be noted that there is an additional computational cost associated
with the use of the adaptive multi-resolution wavelet methodology. Currently, the
cost per point is approximately three to five times greater than that one of the
corresponding non-adaptive computational method. However, the high compression
achieved, which can be as high as 99.5 %, represents a strong acceleration that
greatly outweighs this cost. In addition, memory savings associated with the use of
the adaptive methodology allow higher resolution numerical simulations for given
available computational resources. Further cost improvement is expected for the future
implementations, thanks to the recent development of an efficient data structure
that takes advantage of the multi-resolution hierarchical structure of the wavelet
decomposition (Vasilyev et al. 2008).

3.2. Filtered governing equations

The SCALES equations, which describe the space–time evolution of the most energetic
coherent eddies in the flow, can be formally obtained by applying the wavelet
thresholding filter (3.1) to the continuity (2.1) and Navier–Stokes (2.2) equations.
The SCALES governing equations for linearly forced incompressible turbulence are
written as

∂u>ε
i

∂xi

= 0, (3.2)

∂u>ε
i

∂t
+ u>ε

j

∂u>ε
i

∂xj

= − 1

ρ

∂p>ε

∂xi

+ ν
∂2u>ε

i

∂xj∂xj

− ∂τij

∂xj

+ Qu>ε
i . (3.3)

As a result of the filtering process, the unresolved quantities

τij = uiu
>ε
j − u>ε

i u>ε
j , (3.4)

commonly referred to as SGS stresses, are introduced. The SGS stresses can be
thought of representing the effect of unresolved less energetic background flow on the
dynamics of the resolved energetic eddies. In order to close the filtered equation (3.3),
a SGS model is required to express the unknown stresses (3.4) as a given function of
the resolved velocity field. In practice, the isotropic part of the SGS stress tensor can
be incorporated by a modified filtered pressure variable, so that only the deviatoric
part, hereafter noted with a star, τ ∗

ij = τij − τkkδij /3, is actually modelled. Henceforth,
the filtered momentum equation to be solved is

∂u>ε
i

∂t
+ u>ε

j

∂u>ε
i

∂xj

= −∂P
>ε

∂xi

+ ν
∂2u>ε

i

∂xj∂xj

−
∂τ ∗

ij

∂xj

+ Qu>ε
i , (3.5)

where P
>ε

= (p>ε/ρ)+ (τkk/3). Note that, analogously to LES with non-uniform filter
width (Vasilyev, Lund & Moin 1998; Haselbacher & Vasilyev 2003), the governing
equations for SCALES (3.5) are derived without considering the commutation error
between wavelet filtering and derivative operators. However, this error is significantly
reduced by using the adjacent zone, since a significant number of points below the
thresholding level is retained in the simulations (e.g. Vasilyev 2003).

The balance equation for the resolved kinetic energy, kres = u>ε
j u>ε

j /2, according to
(3.5), is the following:

∂kres

∂t
+ u>ε

j

∂kres

∂xj

= − ∂

∂xi

[
u>ε

j

(
τ ∗
ij + P

>ε
δij

)]
+ ν

∂2kres

∂xj∂xj

− ε̃res − � + 2Qkres, (3.6)

where ε̃res = ν(∂u>ε
i /∂xj )(∂u>ε

i /∂xj ) stands for the resolved pseudo-dissipation. The
term � = −τ ∗

ij S
>ε

ij represents the SGS dissipation, which is the rate at which energy is
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locally transferred from energetic resolved eddies to unresolved residual motions. It
is worth noting that the resolved viscous dissipation for SCALES is higher than for
classical non-adaptive LES, since small-scale dissipative eddies with significant energy
are resolved.

Once volume-averaged, by also exploiting (3.2), (3.6) becomes

dKres

dt
= −〈ε̃res〉 − 〈�〉 + 2QKres, (3.7)

where Kres = 〈kres〉 is the mean resolved kinetic energy. As for the mean

resolved turbulent dissipation, it holds 〈ε̃res〉 = 〈εres〉, where εres = 2νS
>ε

ij S
>ε

ij and

S
>ε

ij = (∂u>ε
i /∂xj + ∂u>ε

j /∂xi)/2 stands for the resolved rate-of-strain tensor. For the
statistically stationary flow, the SCALES analog of (2.5) becomes

Q =
〈εres〉 + 〈�〉

2Kres

. (3.8)

In the SCALES approach the resolved kinetic energy content of the flow practically
coincides with that one of the corresponding DNS solution so that Kres

∼= K . Therefore,
in order to have a solution that matches the DNS results, given the forcing parameter
and thus the eddy turnover time of the turbulence, the SGS model must provide the
right energy dissipation in order to have 〈εres〉 + 〈�〉 ∼= 〈ε〉. That is confirmed by the
numerical experiments carried out in this work and discussed in § 4.

3.3. SGS dynamic model

The filtered equations (3.5) are closed by using the classical eddy viscosity assumption

τ ∗
ij

∼= −2νtS
>ε

ij . (3.9)

The turbulent eddy viscosity νt is determined according to either the global dynamic
model (GDM) proposed by (Goldstein et al. 2005) or the localized dynamic kinetic-
energy-based model (LDKM) developed in (De Stefano et al. 2008).

In the first case, the SGS stress tensor is approximated by

τ ∗
ij

∼= −2CΔ2ε2|S>ε |S>ε

ij , (3.10)

where |S>ε |2 = 2S
>ε

ij S
>ε

ij . When making a comparison with the standard Smagorinsky

approach for non-adaptive dynamic LES, the quantity Cε2 should be interpreted
as the modified model coefficient, while Δ stands for the equivalent filter size. The
group CΔ2ε2 is dynamically evaluated during the simulation by introducing a wavelet
test filter at twice the threshold, while averaging along homogeneous directions is
performed in order to stabilize the numerical solution, so that the model parameter
is a function of time only. The details of the GDM procedure can be found in
(Goldstein et al. 2005), where, in particular, the SGS dissipation was demonstrated to
scale with ε2. Note that the GDM results are only reported for comparison purposes
to demonstrate that both local and global dynamic models work appropriately in the
context of forced turbulence simulation.

In the second case, a modelling mechanism that accounts for the local kinetic
energy transfer back and forth between resolved and unresolved eddies is exploited
by calibrating the eddy viscosity model coefficient based on the energy level of the
residual motions. This level is represented by the SGS kinetic energy

ksgs =
1

2

(
uiui

>ε − u>ε
i u>ε

i

)
= k

>ε − kres. (3.11)
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The unknown SGS stress tensor is approximated by the eddy viscosity model (3.9)
with the turbulent viscosity defined by taking the square root of ksgs as the velocity
scale and the wavelet filter characteristic width Δ as the length scale. Namely, we
assume

τ ∗
ij

∼= −2CνΔk1/2
sgs S

>ε

ij , (3.12)

where Cν stands for a dimensionless model coefficient to be determined. The filter
width Δ at a given time instant can be extracted from the knowledge of the wavelet
mask used during the simulation.

By exploiting the LDKM procedure, the SGS dissipation rate is approximated as
a monotonic function of ksgs , that is,

� ∼= CνΔk1/2
sgs |S>ε |2. (3.13)

Note that the modelled SGS dissipation increases with the wavelet filtering threshold
and can show both signs, thus allowing for the simulation of local energy backscatter.
The modelling procedure is completed by incorporating the following model transport
equation for the SGS kinetic energy variable (e.g. Ghosal et al. 1995):

∂ksgs

∂t
+ u>ε

j

∂ksgs

∂xj

= (ν + νt )
∂2ksgs

∂xj∂xj

− ε̃sgs + �, (3.14)

where ε̃sgs stands for the SGS viscous dissipation, that is,

ε̃sgs = ν

(
∂ui

∂xj

∂ui

∂xj

>ε

− ∂u>ε
i

∂xj

∂u>ε
i

∂xj

)
= ε̃

>ε − ε̃res. (3.15)

A further model for this term must be introduced in order for (3.14) to be closed. By
using simple scaling arguments, the approximation ε̃sgs = CεΔ

−1k3/2
sgs is used, with Cε

a dimensionless coefficient. Both the model parameters Cν and Cε can be determined
as pointwise functions of space and time by exploiting classical dynamic procedures
using either a Germano-like or a Bardina-like approach, as discussed in De Stefano
et al. (2008). In this paper, for the sake of brevity, only the results using the Germano-
like approach for the eddy viscosity model and the Bardina one for the SGS viscous
dissipation model are presented. The wavelet filtered Navier–Stokes equations (3.5)
and the SGS kinetic energy equation (3.14) supplied with the above models stand
for a closed system of coupled equations that is solved with the adaptive wavelet
collocation method (e.g. Vasilyev & Kevlahan 2002; Kevlahan, Alam & Vasilyev
2007).

Let us stress the important property of the LDKM procedure, namely the presence
of the physically based built-in feedback mechanism between the resolved kinetic
energy and the SGS kinetic energy through the common term, �, which acts as
energy dissipation in (3.6) and SGS kinetic energy production in equation (3.14). That
mechanism automatically stabilizes the numerical solution, as demonstrated by the
results presented in the following section. More details about the LDKM approach
can be found in De Stefano et al. (2008).

4. Numerical experiments
The filtered Navier–Stokes equations (3.5) are solved, along with the SGS energy

equation (3.14), in a cubic box with triply periodic boundary conditions. The
initial velocity field for the numerical experiments is obtained by wavelet filtering
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of a fully de-aliased pseudo-spectral 1923 DNS statistically steady solution with
Reλ ∼= 60 (De Stefano et al. 2005). Due to the finite-difference nature of the adaptive
solver, the maximum resolution has been increased in each direction with respect to
the spectral DNS case in order not to alter the initial energy content. SCALES is run
using a maximum resolution corresponding to 2563 grid points. However, thanks to
the wavelet filtering procedure, only a very low fraction of these points is actually
used during the simulation. In particular, the thresholding level ε = 0.43 adopted here
corresponds to that one already used in the past for simulating flows at comparable
Reynolds number (e.g. Goldstein et al. 2005).

According to the linear forcing scheme discussed in § 2, the forcing term is evaluated
directly in physical space with the forcing parameter Q =5.2 prescribed in order to
retain in average the energy content of the initial flow field. Note that the above
choice corresponds to fixing the eddy turnover time at τeddy = 0.064. The simulations
are conducted for a temporal range of one hundred eddy turnover times. Diagnostics
include the time evolution of energy and energy dissipation, as well as the time-
averaged energy spectra. Moreover, we consider the evolutions of the eddy turnover
time and the Taylor-scale Reynolds number. The latter is defined as Reλ = u′λ/ν, where
the Taylor length scale can be evaluated for isotropic turbulence as λ= (15νu′2/〈ε〉)1/2
(e.g. Pope 2000).

4.1. Reference solutions

In order to build a reference fully de-aliased pseudo-spectral DNS solution, the
unfiltered Navier–Stokes equations (2.2) are solved on a 1923 Fourier grid by
exploiting the same method of De Stefano et al. (2005). Owing to the moderate
Reynolds number, which is in average Reλ ∼=55, it holds kmaxη ∼= 1.3, where kmax =64
is the highest resolved wavenumber and η stands for the Kolmogorov length scale.
It is worth noting that the Reynolds number is not sufficiently high to allow a clear
inertial scaling in the energy spectrum. Furthermore, since the linear forcing acts
uniformly in the whole wavenumbers domain, the spectrum does not show any peak,
in contrast to what happens for classical low-wavenumber forcing. In fact, the present
spectral DNS is fully consistent with one of those conducted by Rosales & Meneveau
(2005) at Reλ ∼= 51.

As further reference, the numerical solution of the wavelet filtered Navier–Stokes
equations with no SGS model is considered, i.e. τ ∗

ij is set to zero in the filtered
momentum equation (3.5). Owing to the adaptive nature of the method, the wavelet-
based solution is able to react to the lack of the SGS dissipation by increasing
the numerical resolution, retaining more computational nodes with respect to the
modelled case. However, having prescribed a given wavelet threshold, small-size
eddies with small energy cannot be reproduced. Taking the nature of the linearly
forced homogeneous turbulence and the ability of the method to automatically
increase the resolution, the no-model simulation, after a substantially long transient,
reaches the equilibrium with turbulence statistics remarkably close to DNS, including
energy and enstrophy spectra. The relatively low cost of the increased resolution
with respect to the modelled simulations is due to the moderate Reynolds number of
the flow. For higher Reynolds number flows the computational cost of the increased
resolution would be substantially higher and a SGS model would be required to make
simulations practical. The results presented in the next section demonstrate how the
introduction of a model makes it possible to mimic the energy dissipation provided
by the unresolved small scales, thus recovering DNS statistics with coarser resolution.
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Figure 1. Resolved kinetic energy, normalized by the time-averaged DNS energy, for SCALES
with localized dynamic kinetic-energy-based model (LDKM) and global dynamic model
(GDM). The pseudo-spectral DNS, no-model (NOM), and non-adaptive dynamic LES
solutions are shown as reference. The time is normalized by the theoretical eddy turnover
time.

Finally, in order to highlight the difference between SCALES and classical non-
adaptive LES, the present results are compared to the LES solution obtained on a
regular 643 grid using the same wavelet-based code without grid adaptation. This LES
calculation is supplied with the global dynamic Smagorinsky eddy viscosity model.

4.2. SCALES solutions

The kinetic energy evolution for the two different SCALES solutions is illustrated
in figure 1, compared with the reference pseudo-spectral DNS solution. In this as
well as in the other figures the time is normalized by the theoretical eddy turnover
time that is (3Q)−1. The energy level is normalized by the time-averaged DNS
energy while the volume averaging is performed in physical space. As one can see,
the wavelet-based solutions are able to match the averaged DNS energy level. The
major part of the energy content of the flow is captured by a limited number of
wavelets. In fact, the SCALES solutions use in average only 0.5 % of the available
2563 wavelets, as demonstrated in figure 2, where the percentage of active wavelets
is reported. The present grid compression is in agreement with previous studies
on decaying homogeneous turbulence. The achieved compression corresponds to
retaining about 1 % of the 1923 Fourier modes used for de-aliasing in the reference
spectral DNS, according to the 3/2 rule (e.g. De Stefano et al. 2005). Moreover,
by making a comparison with the no-model solution, it seems evident that the
introduction of a SGS model makes it possible to substantially reduce the number of
computational nodes involved in the simulation. Since the computational complexity
of the wavelet-based method is O(N), the savings in terms of computational cost of
the calculations directly link to the achieved grid compression (Kevlahan & Vasilyev
2005). In particular, considering that the sixth order AWCM code is about three to
five times slower per grid point than pseudo-spectral code, the compression factor of
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Figure 2. Percentage of active wavelets for SCALES with LDKM and GDM models. The
no-model solution is shown as reference. Labels and time normalization as in figure 1.

R
es

o
lv

ed
 d

is
si

p
at

io
n

0

0.5

1.0

1.5

2.0 DNS
LDKM
GDM
NOM
LES

Time

20 40 60 80 100

Figure 3. Resolved dissipation, normalized by the time-averaged DNS dissipation, for
SCALES with LDKM and GDM models. The pseudo-spectral DNS, no-model and
non-adaptive dynamic LES solutions are shown as reference. Labels and time normalization
as in figure 1.

100 obtained for LDKM thus represents an acceleration that is about 25 times with
respect to pseudo-spectral DNS.

The effectiveness of the model is confirmed by analysing the resolved viscous
dissipation and the total dissipation, i.e. the sum of resolved and modelled SGS
dissipation, reported in figures 3 and 4, respectively. The model is able to provide the
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Figure 4. Total dissipation, normalized by the time-averaged DNS dissipation, for SCALES
with LDKM and GDM models. The pseudo-spectral DNS, no-model and non-adaptive
dynamic LES solutions are shown as reference. Labels and time normalization as in figure 1.

right amount of energy dissipation in order to match the DNS viscous dissipation.
It should be emphasized that, since the linear forcing acts all the way down to
the dissipative scales, this fact also indirectly confirms the good agreement in the
evolution of the resolved kinetic energy. The same does not hold for non-adaptive
dynamic LES, also reported in the figure, for which the resolved viscous dissipation
is much lower. In this case, the SGS model can only partly compensate such loss and
the total dissipation does not match DNS. Note that since the forcing parameter Q

is constant, according to (3.8), the total dissipation and the resolved kinetic energy
are not independent measures of the simulation skill.

In fact, a distinctive feature of the SCALES methodology is the ability to simulate
the dynamically important energetic small-scale motions in a turbulent flow field.
That is confirmed in the present linearly-forced case by inspection of the time-
averaged energy and enstrophy spectra, reported in figures 5 and 6, respectively. By
making a comparison with spectra corresponding to the wavelet filtered DNS, which
stands for the ideal solution, one can conclude that SCALES is able to represent
highest wavenumber modes in a way that non-adaptive LES is unable to do. In
the non-adaptive case there is also an overestimation of the energy associated to
the largest scales. Good agreement between no-model (NOM) and wavelet filtered
DNS spectra is not surprising. As demonstrated by Vasilyev et al. (2008) for freely
decaying turbulence and confirmed here in the forced case, thanks to the adaptive
nature of the method, in absence of modelled dissipation, the energy is transferred
to smaller scales all the way down to Kolmogorov scale, where it is dissipated by
viscous stresses. As illustrated in figure 2, the number of active wavelets for the
NOM solution is higher with respect to the modelled cases, and the simulation tends
towards the computationally expensive CVS regime.

Moreover, the fact that both averaged kinetic energy and averaged total dissipation
are almost identical to corresponding DNS data also allows us to make a comparison
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Figure 5. Time-averaged energy spectra, normalized by the time-averaged DNS energy, for
SCALES with LDKM and GDM models. The pseudo-spectral DNS, wavelet filtered DNS
(FDNS), no-model and non-adaptive dynamic LES solutions are shown as reference. The
wavenumber variable is normalized by the size of the cubic computational domain. Labels as
in figure 1.

E
n
st

ro
p
h
y

Wavenumber
32 64

100

10–2

10–4

DNS

LDKM
FDNS

GDM
NOM
LES

Figure 6. Time-averaged enstrophy spectra, normalized by the time-averaged DNS
dissipation, for SCALES with LDKM and GDM models. The pseudo-spectral DNS, wavelet
filtered DNS (FDNS), no-model and non-adaptive dynamic LES solutions are shown as
reference. The wavenumber variable is normalized by the size of the cubic computational
domain. Labels as in figure 1.
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Figure 7. Eddy turnover time τeddy = u′2/〈ε〉, normalized by the theoretical value (3Q)−1,
for SCALES with LDKM and GDM models. The pseudo-spectral DNS, no-model and
non-adaptive dynamic LES solutions are shown as reference. Labels and time normalization
as in figure 1.

for other statistical quantities of interest. This is a unique feature of the SCALES
approach that is distinctively different from standard non-adaptive LES, where often
such direct comparison with DNS cannot be made. However, in order to make a
meaningful comparison, the statistics that involve the level of energy dissipation must
be redefined in terms of the total dissipation. This is illustrated, for instance, for
the eddy turnover time and the Taylor-scale Reynolds number in figures 7 and 8,
respectively. Once again, the SCALES results match almost perfectly DNS data.
Finally, as an example of high-order statistics, in figures 9 and 10 the skewness and
the kurtosis of a velocity-derivative component are depicted, respectively.

The present results demonstrate the effectiveness and efficiency of the SCALES
methodology in the forced case. The two different models tested agree well in the
present homogeneous case, while the localized model is expected to perform better for
non-homogeneous turbulent flows. Solving a subgrid energy transport equation allows
proper representation of the energy transfer between resolved and SGS motions, both
forward and backscatter. In order to quantify backscatter, the percentage of adaptive
grid points where negative SGS dissipation occurs (Cν < 0) and the fraction of SGS
dissipation due to inverse energy transfer are shown in figure 11 for a reduced time
interval. It appears that energy backscatter involves about 31 % of the active grid
points. Moreover, in the LDKM framework, the SGS to resolved kinetic energy
ratio, 〈ksgs〉/〈kres〉, can be interpreted as a measure of the turbulence resolution of
the simulation. After the short initial transient, this ratio has been found to tend
towards a statistically constant value that is about 6 %. Let us also note that, in
contrast to what experienced for decaying turbulence by De Stefano et al. (2008), the
SCALES solution is practically insensitive to the initial value of the ksgs variable in
the present forced case. Finally, the localized model is expected to work even better
for non-homogeneous as well as higher Reynolds number flows.
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Figure 8. Taylor-scale Reynolds number for SCALES with LDKM and GDM models. The
pseudo-spectral DNS, no-model and non-adaptive dynamic LES solutions are shown as
reference. Labels and time normalization as in figure 1.
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Figure 9. Velocity derivative skewness for SCALES with LDKM and GDM models. The
pseudo-spectral DNS, no-model and non-adaptive dynamic LES solutions are shown as
reference. Labels and time normalization as in figure 1.

5. Conclusions
Adaptive large eddy simulations of linearly forced isotropic turbulence are

successfully performed. The energy transfer between resolved and residual motions is
either mimicked or directly ensured by solving an additional transport model equation
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Figure 10. Velocity derivative kurtosis for SCALES with LDKM and GDM models. The
pseudo-spectral DNS, no-model and non-adaptive dynamic LES solutions are shown as
reference. Labels and time normalization as in figure 1.
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Figure 11. Percentage of grid points with energy backscatter and fraction of negative SGS
dissipation for SCALES with LDKM model. Time normalization as in figure 1.

for the SGS kinetic energy. The energy-based dynamic modelling procedure controls
backscatter-induced instabilities over long-time integration.

The SCALES solutions match the filtered DNS with a very high grid compression
with respect to the non-adaptive case. The energy level and the energy and enstrophy
spectra are comparable to reference pseudo-spectral DNS. The same holds for other
relevant statistics. The model provides the right amount of energy dissipation as
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demonstrated by suitably evaluating the corresponding statistics in terms of the total
dissipation, resolved plus SGS dissipation.

The present study demonstrates that the SCALES method supplied with either the
localized dynamic energy-based or the global dynamic model works for statistically
steady flows. This work represents a further step in the development of the wavelet-
based methodology in order to apply it to the simulation of high Reynolds number
turbulent flows of scientific and engineering interest. In fact, the adaptive-gridding
strategy makes the method more complete with respect to the classical non-adaptive
approach, being almost fully free from subjective specifications.
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